- A 0-1
- B Jeffreys.
- C Absoluta.
- D Imprópria.
- E Quadrática.
Na abordagem bayesiana, com base no conhecimento que se tem sobre um parâmetro θ, pode-se definir uma família paramétrica de densidades. Nesse caso, a distribuição a priori é representada por uma forma funcional, cujos parâmetros devem ser especificados de acordo com esse conhecimento. Essa abordagem, em geral, facilita a análise e o caso mais importante é o de prioris conjugadas. A ideia é que as distribuições a priori e a posteriori pertençam à mesma classe de distribuições e, assim, a atualização do conhecimento que se tem do parâmetro θ envolve apenas uma mudança nos hiperparâmetros.
Nesse caso, assinale a alternativa em que é correto afirmar que a priori é conjugada.
A respeito dos diferentes métodos de estimação de parâmetros, julgue o item a seguir.
A estimação de parâmetros pelo método bayesiano independe da distribuição a priori utilizada.
Sobre a abordagem bayesiana para estimar um parâmetro θ, analise as afirmativas a seguir.
I. Uma distribuição de probabilidade é atribuída para esse parâmetro.
II. O amostrador de Gibbs e Metropolis-Hastings é utilizado para gerar os dados que serão utilizados na distribuição de verossimilhança.
III. A distribuição beta é conjugada das distribuições binomial, geométrica, Poisson e binomial negativa.
IV. A definição da distribuição priori pode ser totalmente subjetiva.
Estão corretas apenas as afirmativas